# moved most functionallity out of main due to: # https://issues.apache.org/jira/browse/BEAM-6158 import argparse import json import logging import os from datetime import datetime from io import BytesIO from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Tuple, cast import matplotlib.cm import PIL.Image import numpy as np from lxml import etree from pdf2image import convert_from_bytes from sciencebeam_utils.utils.file_path import relative_path from sciencebeam_utils.utils.progress_logger import logging_tqdm from sciencebeam_utils.utils.file_list import load_file_list from sciencebeam_gym.utils.bounding_box import BoundingBox from sciencebeam_gym.utils.collections import get_inverted_dict from sciencebeam_gym.utils.io import read_bytes, write_bytes, write_text from sciencebeam_gym.utils.image_object_matching import ( DEFAULT_MAX_BOUNDING_BOX_ADJUSTMENT_ITERATIONS, DEFAULT_MAX_HEIGHT, DEFAULT_MAX_WIDTH, get_bounding_box_for_image, get_image_list_object_match, get_sift_detector_matcher ) from sciencebeam_gym.utils.visualize_bounding_box import draw_bounding_box from sciencebeam_gym.utils.pipeline import ( AbstractPipelineFactory, add_pipeline_args, process_pipeline_args ) LOGGER = logging.getLogger(__name__) XLINK_NS = 'http://www.w3.org/1999/xlink' XLINK_NS_PREFIX = '{%s}' % XLINK_NS XLINK_HREF = XLINK_NS_PREFIX + 'href' def get_images_from_pdf(pdf_path: str) -> List[PIL.Image.Image]: return convert_from_bytes(read_bytes(pdf_path)) class CategoryNames: FIGURE = 'figure' FORMULA = 'formula' TABLE = 'table' UNKNOWN_GRAPHIC = 'unknown_graphic' class GraphicImageDescriptor(NamedTuple): href: str path: str category_name: str related_element_id: Optional[str] = None class GraphicImageNotFoundError(RuntimeError): pass CATEGROY_NAME_BY_XML_TAG = { 'disp-formula': CategoryNames.FORMULA, 'fig': CategoryNames.FIGURE, 'table-wrap': CategoryNames.TABLE } def get_category_name_by_xml_node(xml_node: etree.ElementBase) -> str: while xml_node is not None: category_name = CATEGROY_NAME_BY_XML_TAG.get(xml_node.tag) if category_name: return category_name xml_node = xml_node.getparent() return CategoryNames.UNKNOWN_GRAPHIC def get_related_element_id_by_xml_node(xml_node: etree.ElementBase) -> Optional[str]: while xml_node is not None: related_element_id = xml_node.attrib.get('id') if related_element_id: return related_element_id xml_node = xml_node.getparent() return None def iter_graphic_element_descriptors_from_xml_node( xml_root: etree.ElementBase, parent_dirname: str ) -> Iterable[GraphicImageDescriptor]: for graphic_element in xml_root.xpath('//graphic'): href = graphic_element.attrib.get(XLINK_HREF) if href: yield GraphicImageDescriptor( href=href, path=os.path.join(parent_dirname, href), category_name=get_category_name_by_xml_node(graphic_element), related_element_id=get_related_element_id_by_xml_node(graphic_element) ) def get_graphic_element_descriptors_from_xml_file( xml_path: str ) -> List[GraphicImageDescriptor]: return list(iter_graphic_element_descriptors_from_xml_node( etree.fromstring(read_bytes(xml_path)), parent_dirname=os.path.dirname(xml_path) )) def read_bytes_with_optional_gz_extension(path_or_url: str) -> bytes: if not path_or_url.endswith('.gz'): try: return read_bytes(path_or_url + '.gz') except FileNotFoundError: LOGGER.debug( 'file not found %r, attempting to read %r', path_or_url + '.gz', path_or_url ) return read_bytes(path_or_url) def get_args_parser(): parser = argparse.ArgumentParser() parser.add_argument( '--debug', action='store_true', help='Enable debug logging' ) pdf_file_group = parser.add_mutually_exclusive_group(required=True) pdf_file_group.add_argument( '--pdf-file-list', type=str, help='Path to the PDF file list' ) pdf_file_group.add_argument( '--pdf-file', type=str, help='Path to the PDF file' ) xml_image_group = parser.add_mutually_exclusive_group(required=True) xml_image_group.add_argument( '--image-files', nargs='+', type=str, help='Path to the images to find the bounding boxes for' ) xml_image_group.add_argument( '--xml-file-list', type=str, help='Path to the xml file list, whoes graphic elements to find the bounding boxes for' ) xml_image_group.add_argument( '--xml-file', type=str, help='Path to the xml file, whoes graphic elements to find the bounding boxes for' ) parser.add_argument( '--pdf-base-path', type=str, help=( 'The PDF base path is used to determine the output directory' ' based on the source folder.' ' This results in sub directories in --output-path,' ' if the source file is also in a sub directory.' ) ) parser.add_argument( '--pdf-file-column', type=str, default='source_url', help='The column for --pdf-file-list (if tsv or csv).' ) parser.add_argument( '--xml-file-column', type=str, default='xml_url', help='The column for --xml-file-list (if tsv or csv).' ) parser.add_argument( '--limit', type=int, help=( 'The limit argument allows you to limit the number of documents to process,' ' when using file lists.' ) ) parser.add_argument( '--output-path', type=str, help='The base output path to write files to (required for file lists).' ) parser.add_argument( '--output-json-file', required=True, type=str, help='The path to the output JSON file to write the bounding boxes to.' ) parser.add_argument( '--output-annotated-images-path', required=False, type=str, help=( 'The path to the output directory, that annotated images should be saved to.' ' Disabled, if not specified.' ) ) parser.add_argument( '--max-internal-width', type=int, default=DEFAULT_MAX_WIDTH, help='Maximum internal width (for faster processing)' ) parser.add_argument( '--max-internal-height', type=int, default=DEFAULT_MAX_HEIGHT, help='Maximum internal height (for faster processing)' ) parser.add_argument( '--use-grayscale', action='store_true', help='Convert images to grayscale internally' ) parser.add_argument( '--skip-errors', action='store_true', help='Skip errors finding bounding boxes and output missing annotations' ) parser.add_argument( '--max-bounding-box-adjustment-iterations', type=int, default=DEFAULT_MAX_BOUNDING_BOX_ADJUSTMENT_ITERATIONS, help=( 'Maximum bounding box adjustment iterations (0 to disable).' ' Sometimes the bounding box returned by the algorithm is slightly off.' ' With bounding box adjustments, the final bounding box are adjusted' ' in order to maximise the score.' ) ) add_pipeline_args(parser) return parser def process_args(args: argparse.Namespace): process_pipeline_args(args, args.output_path) if args.pdf_file_list or args.xml_file_list: if not args.pdf_file_list or not args.xml_file_list: raise RuntimeError( 'both --pdf-file-list and -xml-file-list must be used together' ) if args.pdf_file_list and args.image_files: raise RuntimeError('--images-files cannot be used together with --pdf-file-list') if args.pdf_file_list and not args.pdf_base_path: raise RuntimeError('--pdf-base-path required for --pdf-file-list') def parse_args(argv: Optional[List[str]] = None): parser = get_args_parser() parsed_args = parser.parse_args(argv) return parsed_args def save_annotated_images( pdf_images: List[PIL.Image.Image], annotations: List[dict], output_annotated_images_path: str, category_name_by_id: Dict[int, str] ): cmap = matplotlib.cm.get_cmap('Set1') for page_index, page_image in enumerate(pdf_images): page_image_id = (1 + page_index) output_filename = 'page_%05d.png' % page_image_id full_output_path = os.path.join(output_annotated_images_path, output_filename) page_annotations = [ annotation for annotation in annotations if annotation['image_id'] == page_image_id ] page_image_array = np.copy(np.asarray(page_image)) for annotation in page_annotations: category_name = category_name_by_id[annotation['category_id']] bounding_box = BoundingBox(*annotation['bbox']).round() color: Tuple[int, int, int] = cast(Tuple[int, int, int], tuple(( int(v) for v in ( np.asarray(cmap(annotation['category_id'])[:3]) * 255 ) ))) related_element_id = annotation.get('related_element_id') score = annotation.get('_score') text = f'{category_name}: {annotation["file_name"]}' if related_element_id: text += f' ({related_element_id})' if score is not None: text += ' (%.2f)' % score draw_bounding_box( page_image_array, bounding_box=bounding_box, color=color, text=text ) image_png_bio = BytesIO() PIL.Image.fromarray(page_image_array).save(image_png_bio, format='PNG') write_bytes(full_output_path, image_png_bio.getvalue()) def process_single_document( pdf_path: str, image_paths: Optional[List[str]], xml_path: Optional[str], json_path: str, max_internal_width: int, max_internal_height: int, use_grayscale: bool, skip_errors: bool, max_bounding_box_adjustment_iterations: int, output_annotated_images_path: Optional[str] = None ): pdf_images = get_images_from_pdf(pdf_path) if xml_path: image_descriptors = get_graphic_element_descriptors_from_xml_file(xml_path) else: assert image_paths is not None image_descriptors = [ GraphicImageDescriptor( href=image_path, path=image_path, category_name=CategoryNames.UNKNOWN_GRAPHIC ) for image_path in image_paths ] object_detector_matcher = get_sift_detector_matcher() category_id_by_name: Dict[str, int] = {} annotations: List[dict] = [] missing_annotations: List[dict] = [] image_cache: Dict[Any, Any] = {} for image_descriptor in logging_tqdm( image_descriptors, logger=LOGGER, desc='processing images(%r):' % os.path.basename(pdf_path) ): LOGGER.debug('processing article image: %r', image_descriptor.href) template_image = PIL.Image.open(BytesIO(read_bytes_with_optional_gz_extension( image_descriptor.path ))) LOGGER.debug('template_image: %s x %s', template_image.width, template_image.height) image_list_match_result = get_image_list_object_match( pdf_images, template_image, object_detector_matcher=object_detector_matcher, image_cache=image_cache, template_image_id=f'{id(image_descriptor)}-{image_descriptor.href}', max_width=max_internal_width, max_height=max_internal_height, use_grayscale=use_grayscale, max_bounding_box_adjustment_iterations=max_bounding_box_adjustment_iterations ) category_id = category_id_by_name.get(image_descriptor.category_name) if category_id is None: category_id = 1 + len(category_id_by_name) category_id_by_name[image_descriptor.category_name] = category_id annotation = { 'file_name': image_descriptor.href, 'category_id': category_id } if image_descriptor.related_element_id: annotation['related_element_id'] = image_descriptor.related_element_id if not image_list_match_result: if not skip_errors: raise GraphicImageNotFoundError( 'image bounding box not found for: %r' % image_descriptor.href ) missing_annotations.append(annotation) continue page_index = image_list_match_result.target_image_index pdf_image = pdf_images[page_index] pdf_page_bounding_box = get_bounding_box_for_image(pdf_image) bounding_box = image_list_match_result.target_bounding_box assert bounding_box LOGGER.debug('bounding_box: %s', bounding_box) annotation = { **annotation, 'image_id': (1 + page_index), 'bbox': bounding_box.intersection(pdf_page_bounding_box).to_list(), '_score': image_list_match_result.score } annotations.append(annotation) if output_annotated_images_path: LOGGER.info('saving annotated images to: %r', output_annotated_images_path) save_annotated_images( pdf_images=pdf_images, annotations=annotations, output_annotated_images_path=output_annotated_images_path, category_name_by_id=get_inverted_dict(category_id_by_name) ) data_json = { 'info': { 'version': '0.0.1', 'date_created': datetime.utcnow().isoformat() }, 'images': [ { 'file_name': os.path.basename(pdf_path) + '/page_%05d.jpg' % (1 + page_index), 'width': pdf_image.width, 'height': pdf_image.height, 'id': (1 + page_index) } for page_index, pdf_image in enumerate(pdf_images) ], 'annotations': annotations, 'categories': [ { 'id': category_id, 'name': category_name } for category_name, category_id in category_id_by_name.items() ] } if missing_annotations: data_json['missing_annotations'] = missing_annotations LOGGER.info('writing to: %r', json_path) write_text(json_path, json.dumps(data_json, indent=2)) class FindBoundingBoxItem(NamedTuple): pdf_file: str xml_file: str image_files: Optional[List[str]] = None class FindBoundingBoxPipelineFactory(AbstractPipelineFactory[FindBoundingBoxItem]): def __init__(self, args: argparse.Namespace): super().__init__(resume=args.resume) self.args = args self.max_internal_width = args.max_internal_width self.max_internal_height = args.max_internal_height self.use_grayscale = args.use_grayscale self.skip_errors = args.skip_errors self.max_bounding_box_adjustment_iterations = args.max_bounding_box_adjustment_iterations def process_item(self, item: FindBoundingBoxItem): output_json_file = self.get_output_file_for_item(item) output_annotated_images_path = self.get_output_annotated_images_directory_for_item(item) process_single_document( pdf_path=item.pdf_file, image_paths=item.image_files, xml_path=item.xml_file, json_path=output_json_file, max_internal_width=self.max_internal_width, max_internal_height=self.max_internal_height, use_grayscale=self.use_grayscale, skip_errors=self.skip_errors, output_annotated_images_path=output_annotated_images_path, max_bounding_box_adjustment_iterations=self.max_bounding_box_adjustment_iterations ) def get_item_list(self): args = self.args pdf_file_list: List[str] xml_file_list: List[str] image_files: Optional[List[str]] = None if args.pdf_file_list: assert args.xml_file_list pdf_file_list = load_file_list( args.pdf_file_list, column=args.pdf_file_column, limit=args.limit ) xml_file_list = load_file_list( args.xml_file_list, column=args.xml_file_column, limit=args.limit ) else: pdf_file_list = [args.pdf_file] xml_file_list = [args.xml_file] image_files = args.image_files assert len(pdf_file_list) == len(xml_file_list), \ f'number of pdf and xml files must match: {len(pdf_file_list)} != {len(xml_file_list)}' LOGGER.debug('processing: pdf_file_list=%r, xml_file_list=%r', pdf_file_list, xml_file_list) return [ FindBoundingBoxItem( pdf_file=pdf_file, xml_file=xml_file, image_files=image_files ) for pdf_file, xml_file in zip(pdf_file_list, xml_file_list) ] def get_output_directory_for_item(self, item: FindBoundingBoxItem) -> str: if self.args.output_path and self.args.pdf_base_path: return os.path.join( self.args.output_path, relative_path( self.args.pdf_base_path, os.path.dirname(item.pdf_file) ) ) return self.args.output_path def get_output_json_file_for_item(self, item: FindBoundingBoxItem) -> str: output_path = self.get_output_directory_for_item(item) if output_path: return os.path.join( output_path, self.args.output_json_file ) return self.args.output_json_file def get_output_annotated_images_directory_for_item(self, item: FindBoundingBoxItem) -> str: output_path = self.get_output_directory_for_item(item) if output_path: return os.path.join( output_path, self.args.output_annotated_images_path ) return self.args.output_annotated_images_path def get_output_file_for_item(self, item: FindBoundingBoxItem) -> str: return self.get_output_json_file_for_item(item) def run(args: argparse.Namespace): FindBoundingBoxPipelineFactory(args).run( args ) def main(argv: Optional[List[str]] = None): args = parse_args(argv) if args.debug: for name in ['__main__', 'sciencebeam_gym']: logging.getLogger(name).setLevel(logging.DEBUG) LOGGER.info('args: %s', args) process_args(args) run(args) if __name__ == '__main__': logging.basicConfig(level='INFO') main()