Newer
Older
#!/bin/bash
export JOB_ID_FILE='.job-id'
if [ -f "$JOB_ID_FILE" ]; then
rm "${JOB_ID_FILE}"
fi
source prepare-shell.sh
COMMON_ARGS=(
--output_path "${TRAIN_MODEL_PATH}/"
--eval_data_paths "${PREPROC_PATH}/test/*tfrecord*"
--train_data_paths "${PREPROC_PATH}/train/*tfrecord*"
--model "${MODEL_NAME}"
--batch_size 10
--eval_set_size 10
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
)
if [ $USE_SEPARATE_CHANNELS == true ]; then
COMMON_ARGS=(
${COMMON_ARGS[@]}
--color_map "${CONFIG_PATH}/${COLOR_MAP_FILENAME}"
)
fi
if [ $USE_CLOUD == true ]; then
gcloud ml-engine jobs submit training "$JOB_ID" \
--stream-logs \
--module-name sciencebeam_gym.trainer.task \
--package-path sciencebeam_gym \
--staging-bucket "$BUCKET" \
--region us-central1 \
--runtime-version=1.0 \
--scale-tier=BASIC_GPU \
-- \
--save_max_to_keep 10 \
--log_interval_secs 100000 \
--eval_interval_secs 100000 \
--save_interval_secs 100000 \
--log_freq 500 \
--eval_freq 500 \
--save_freq 500 \
--max_steps 1000 \
${COMMON_ARGS[@]}
else
gcloud ml-engine local train \
--module-name sciencebeam_gym.trainer.task \
--package-path sciencebeam_gym.trainer \
-- \
--save_max_to_keep 3 \
--log_interval_secs 600 \
--eval_interval_secs 300 \
--save_interval_secs 300 \
--log_freq 50 \
--eval_freq 50 \
--save_freq 50 \
--max_steps 3 \
${COMMON_ARGS[@]}
fi