Newer
Older
from __future__ import division
import logging
import csv
from builtins import str as text
from itertools import tee, islice
from future.utils import python_2_unicode_compatible
from six.moves import zip_longest
from sciencebeam_gym.utils.csv import (
csv_delimiter_by_filename,
write_csv_row
)
from sciencebeam_gym.utils.string import (
LazyStr
)
from sciencebeam_gym.utils.collection import (
iter_flatten,
extract_from_dict
)
from sciencebeam_gym.preprocess.annotation.fuzzy_match import (
fuzzy_match
)
from sciencebeam_gym.preprocess.annotation.annotator import (
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
AbstractAnnotator
)
THIN_SPACE = u'\u2009'
EN_DASH = u'\u2013'
EM_DASH = u'\u2014'
DEFAULT_SCORE_THRESHOLD = 0.9
DEFAULT_MAX_MATCH_GAP = 5
def get_logger():
return logging.getLogger(__name__)
def normalise_str(s):
return s.lower().replace(EM_DASH, u'-').replace(EN_DASH, u'-').replace(THIN_SPACE, ' ')
def normalise_str_or_list(x):
if isinstance(x, list):
return [normalise_str(s) for s in x]
else:
return normalise_str(x)
class SequenceWrapper(object):
def __init__(self, structured_document, tokens, str_filter_f=None):
self.structured_document = structured_document
self.str_filter_f = str_filter_f
self.tokens = tokens
self.token_str_list = [structured_document.get_text(t) or '' for t in tokens]
self.tokens_as_str = ' '.join(self.token_str_list)
if str_filter_f:
self.tokens_as_str = str_filter_f(self.tokens_as_str)
def tokens_between(self, index_range):
start, end = index_range
i = 0
for token, token_str in zip(self.tokens, self.token_str_list):
if i >= end:
break
token_end = i + len(token_str)
if token_end > start:
yield token
i = token_end + 1
def sub_sequence_for_tokens(self, tokens):
return SequenceWrapper(self.structured_document, tokens, str_filter_f=self.str_filter_f)
def untagged_sub_sequences(self):
token_tags = [self.structured_document.get_tag(t) for t in self.tokens]
tagged_count = len([t for t in token_tags if t])
if tagged_count == 0:
yield self
elif tagged_count == len(self.tokens):
pass
else:
untagged_tokens = []
for token, tag in zip(self.tokens, token_tags):
if not tag:
untagged_tokens.append(token)
elif untagged_tokens:
yield self.sub_sequence_for_tokens(untagged_tokens)
untagged_tokens = []
if untagged_tokens:
yield self.sub_sequence_for_tokens(untagged_tokens)
def __str__(self):
return self.tokens_as_str
def __repr__(self):
return '{}({})'.format('SequenceWrapper', self.tokens_as_str)
class SequenceWrapperWithPosition(SequenceWrapper):
def __init__(self, *args, **kwargs):
position, kwargs = extract_from_dict(kwargs, 'position')
super(SequenceWrapperWithPosition, self).__init__(*args, **kwargs)
self.position = position
def sub_sequence_for_tokens(self, tokens):
return SequenceWrapperWithPosition(
self.structured_document, tokens,
str_filter_f=self.str_filter_f,
position=self.position
)
def __repr__(self):
return '{}({}, {})'.format('SequenceWrapperWithPosition', self.tokens_as_str, self.position)
@python_2_unicode_compatible
class SequenceMatch(object):
def __init__(self, seq1, seq2, index1_range, index2_range):
self.seq1 = seq1
self.seq2 = seq2
self.index1_range = index1_range
self.index2_range = index2_range
def __str__(self):
return u"SequenceMatch('{}'[{}:{}], '{}'[{}:{}])".format(
self.seq1,
self.index1_range[0],
self.index1_range[1],
self.seq2,
self.index2_range[0],
self.index2_range[1]
)
@python_2_unicode_compatible
class PositionedSequenceSet(object):
def __init__(self):
self.data = set()
def add(self, sequence):
self.data.add(sequence.position)
def is_close_to_any(self, sequence, max_gap):
if not max_gap or not self.data:
return True
position = sequence.position
max_distance = max_gap + 1
for other_position in self.data:
if abs(position - other_position) <= max_distance:
return True
return False
def __str__(self):
return str(self.data)
def offset_range_by(index_range, offset):
if not offset:
return index_range
return (offset + index_range[0], offset + index_range[1])
def skip_whitespaces(s, start):
while start < len(s) and s[start].isspace():
start += 1
return start
def get_fuzzy_match_filter(
b_score_threshold, min_match_count, total_match_threshold,
ratio_min_match_count, ratio_threshold):
def check(fm, fm_next=None):
fm.match_count() >= ratio_min_match_count and
fm.ratio() >= ratio_threshold):
fm.b_gap_ratio() >= b_score_threshold and
(
fm.match_count() >= min_match_count and
(fm_next is None or fm_next.ratio() >= ratio_threshold)
) or
fm.a_ratio() >= total_match_threshold
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
)
)
return check
DEFAULT_SEQ_FUZZY_MATCH_FILTER = get_fuzzy_match_filter(
DEFAULT_SCORE_THRESHOLD,
5,
0.9,
50,
0.9
)
DEFAULT_CHOICE_FUZZY_MATCH_FILTER = get_fuzzy_match_filter(
DEFAULT_SCORE_THRESHOLD,
1,
0.9,
100,
0.9
)
class MatchDebugFields(object):
TAG = 'tag'
MATCH_MULTIPLE = 'match_multiple'
TAG_VALUE_PRE = 'tag_value_pre'
TAG_VALUE_CURRENT = 'tag_value_current'
START_INDEX = 'start_index'
NEXT_START_INDEX = 'next_start_index'
REACHED_END = 'reached_end'
CHOICE_COMBINED = 'choice_combined'
CHOICE_CURRENT = 'choice_current'
CHOICE_NEXT = 'choice_next'
ACCEPTED = 'accepted'
TAG_TO_CHOICE_MATCH = 'tag_to_choice_match'
FM_COMBINED = 'fm_combined'
FM_COMBINED_DETAILED = 'fm_combined_detailed'
FM_CURRENT = 'fm_current'
FM_CURRENT_DETAILED = 'fm_current_detailed'
FM_NEXT = 'fm_next'
FM_NEXT_DETAILED = 'fm_next_detailed'
DEFAULT_MATCH_DEBUG_COLUMNS = [
MatchDebugFields.TAG,
MatchDebugFields.MATCH_MULTIPLE,
MatchDebugFields.TAG_VALUE_PRE,
MatchDebugFields.TAG_VALUE_CURRENT,
MatchDebugFields.START_INDEX,
MatchDebugFields.NEXT_START_INDEX,
MatchDebugFields.REACHED_END,
MatchDebugFields.CHOICE_COMBINED,
MatchDebugFields.CHOICE_CURRENT,
MatchDebugFields.CHOICE_NEXT,
MatchDebugFields.ACCEPTED,
MatchDebugFields.TAG_TO_CHOICE_MATCH,
MatchDebugFields.FM_COMBINED,
MatchDebugFields.FM_COMBINED_DETAILED,
MatchDebugFields.FM_CURRENT,
MatchDebugFields.FM_CURRENT_DETAILED,
MatchDebugFields.FM_NEXT,
MatchDebugFields.FM_NEXT_DETAILED
]
def find_best_matches(
target_annotation,
sequence,
choices,
seq_match_filter=DEFAULT_SEQ_FUZZY_MATCH_FILTER,
choice_match_filter=DEFAULT_CHOICE_FUZZY_MATCH_FILTER,
max_gap=DEFAULT_MAX_MATCH_GAP,
matched_choices=None,
match_detail_reporter=None):
if matched_choices is None:
matched_choices = PositionedSequenceSet()
if isinstance(sequence, list):
get_logger().debug('found sequence list: %s', sequence)
# Use tee as choices may be an iterable instead of a list
for s, sub_choices in zip(sequence, tee(choices, len(sequence))):
matches = find_best_matches(
target_annotation,
s,
sub_choices,
seq_match_filter=seq_match_filter,
choice_match_filter=choice_match_filter,
max_gap=max_gap,
matched_choices=matched_choices,
match_detail_reporter=match_detail_reporter
)
for m in matches:
yield m
return
start_index = 0
s1 = text(sequence)
too_distant_choices = []
current_choices, next_choices = tee(choices, 2)
next_choices = islice(next_choices, 1, None)
for choice, next_choice in zip_longest(current_choices, next_choices):
if not matched_choices.is_close_to_any(choice, max_gap=max_gap):
too_distant_choices.append(choice)
continue
current_choice_str = text(choice)
if not current_choice_str:
return
if next_choice:
next_choice_str = text(next_choice)
choice_str = current_choice_str + ' ' + next_choice_str
else:
choice_str = current_choice_str
next_choice_str = None
current_start_index = start_index
get_logger().debug(
'processing choice: tag=%s, s1[:%d]=%s, s1[%d:]=%s, current=%s, next=%s (%s), combined=%s',
target_annotation.name,
start_index, s1[:start_index],
start_index, s1[start_index:],
current_choice_str,
next_choice_str, type(next_choice_str), choice_str
)
fm_combined, fm, fm_next = None, None, None
reached_end = None
tag_to_choice_match = len(s1) - start_index < len(current_choice_str)
if not tag_to_choice_match:
fm_combined = fuzzy_match(s1, choice_str)
fm, fm_next = fm_combined.b_split_at(len(current_choice_str))
get_logger().debug(
'regular match: s1=%s, choice=%s, fm=%s (combined: %s)',
s1, choice, fm, fm_combined
)
get_logger().debug('detailed match: %s', fm_combined.detailed())
accept_match = fm.has_match() and (
seq_match_filter(fm, fm_next) or
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
(seq_match_filter(fm_combined) and fm.b_start_index() < len(current_choice_str))
)
if accept_match:
accept_match = True
sm = SequenceMatch(
sequence,
choice,
fm.a_index_range(),
fm.b_index_range()
)
matched_choices.add(choice)
get_logger().debug('found match: %s', sm)
yield sm
if fm_next.has_match():
sm = SequenceMatch(
sequence,
next_choice,
fm_next.a_index_range(),
fm_next.b_index_range()
)
matched_choices.add(choice)
get_logger().debug('found next match: %s', sm)
yield sm
index1_end = skip_whitespaces(s1, fm_next.a_end_index())
else:
index1_end = skip_whitespaces(s1, fm.a_end_index())
reached_end = index1_end >= len(s1)
if reached_end:
get_logger().debug('end reached: %d >= %d', index1_end, len(s1))
if target_annotation.match_multiple:
start_index = 0
else:
break
else:
start_index = index1_end
get_logger().debug('setting start index to: %d', start_index)
else:
s1_sub = s1[start_index:]
fm_combined = fuzzy_match(choice_str, s1_sub)
fm, fm_next = fm_combined.a_split_at(len(current_choice_str))
get_logger().debug(
'short match: s1_sub=%s, choice=%s, fm=%s (combined: %s)',
s1_sub, choice, fm, fm_combined
)
get_logger().debug('detailed match: %s', fm_combined.detailed())
accept_match = fm.has_match() and (
choice_match_filter(fm) or
(choice_match_filter(fm_combined) and fm_combined.a_start_index() < len(current_choice_str))
)
if accept_match:
sm = SequenceMatch(
sequence,
choice,
offset_range_by(fm.b_index_range(), start_index),
fm.a_index_range()
)
matched_choices.add(choice)
get_logger().debug('found match: %s', sm)
yield sm
if fm_next.has_match():
sm = SequenceMatch(
sequence,
next_choice,
offset_range_by(fm_next.b_index_range(), start_index),
fm_next.a_index_range()
)
get_logger().debug('found next match: %s', sm)
matched_choices.add(next_choice)
yield sm
if not target_annotation.match_multiple:
break
if match_detail_reporter:
match_detail_reporter({
MatchDebugFields.TAG: target_annotation.name,
MatchDebugFields.MATCH_MULTIPLE: target_annotation.match_multiple,
MatchDebugFields.TAG_VALUE_PRE: s1[:current_start_index],
MatchDebugFields.TAG_VALUE_CURRENT: s1[current_start_index:],
MatchDebugFields.START_INDEX: current_start_index,
MatchDebugFields.NEXT_START_INDEX: start_index,
MatchDebugFields.REACHED_END: reached_end,
MatchDebugFields.CHOICE_COMBINED: choice_str,
MatchDebugFields.CHOICE_CURRENT: current_choice_str,
MatchDebugFields.CHOICE_NEXT: next_choice_str,
MatchDebugFields.ACCEPTED: accept_match,
MatchDebugFields.TAG_TO_CHOICE_MATCH: tag_to_choice_match,
MatchDebugFields.FM_COMBINED: fm_combined,
MatchDebugFields.FM_COMBINED_DETAILED: fm_combined and fm_combined.detailed_str(),
MatchDebugFields.FM_CURRENT: fm,
MatchDebugFields.FM_CURRENT_DETAILED: fm and fm.detailed_str(),
MatchDebugFields.FM_NEXT: fm_next,
MatchDebugFields.FM_NEXT_DETAILED: fm_next.detailed_str()
})
if too_distant_choices:
get_logger().debug(
'ignored too distant choices: matched=%s (ignored=%s)',
matched_choices,
LazyStr(lambda: ' '.join(str(choice.position) for choice in too_distant_choices))
)
class CsvMatchDetailReporter(object):
def __init__(self, fp, filename=None, fields=None):
self.fp = fp
self.fields = fields or DEFAULT_MATCH_DEBUG_COLUMNS
self.writer = csv.writer(
fp,
delimiter=csv_delimiter_by_filename(filename)
)
self.writer.writerow(self.fields)
def __call__(self, row):
write_csv_row(self.writer, [row.get(k) for k in self.fields])
def close(self):
self.fp.close()
class MatchingAnnotator(AbstractAnnotator):
def __init__(self, target_annotations, match_detail_reporter=None):
self.target_annotations = target_annotations
self.match_detail_reporter = match_detail_reporter
def annotate(self, structured_document):
pending_sequences = []
for page in structured_document.get_pages():
for line in structured_document.get_lines_of_page(page):
tokens = [
token
for token in structured_document.get_tokens_of_line(line)
if not structured_document.get_tag(token)
]
if tokens:
get_logger().debug(
'tokens without tag: %s',
[structured_document.get_text(token) for token in tokens]
)
pending_sequences.append(SequenceWrapperWithPosition(
structured_document,
tokens,
normalise_str,
position=len(pending_sequences)
))
matched_choices_map = dict()
for target_annotation in self.target_annotations:
get_logger().debug('target annotation: %s', target_annotation)
target_value = normalise_str_or_list(target_annotation.value)
untagged_pending_sequences = iter_flatten(
seq.untagged_sub_sequences() for seq in pending_sequences
)
if target_annotation.bonding:
matched_choices = matched_choices_map.setdefault(
target_annotation.name,
PositionedSequenceSet()
)
else:
matched_choices = PositionedSequenceSet()
matches = find_best_matches(
target_annotation,
target_value,
untagged_pending_sequences,
matched_choices=matched_choices,
match_detail_reporter=self.match_detail_reporter
)
for m in matches:
choice = m.seq2
matching_tokens = list(choice.tokens_between(m.index2_range))
get_logger().debug(
'matching_tokens: %s %s',
[structured_document.get_text(token) for token in matching_tokens],
m.index2_range
)
for token in matching_tokens:
if not structured_document.get_tag(token):
structured_document.set_tag(
token,
target_annotation.name
)
return structured_document