Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
from __future__ import absolute_import
import argparse
import os
import logging
from itertools import islice
import apache_beam as beam
from apache_beam.io.filesystems import FileSystems
from apache_beam.options.pipeline_options import PipelineOptions, SetupOptions
from sciencebeam_gym.utils.collection import (
extend_dict,
remove_keys_from_dict
)
from sciencebeam_gym.beam_utils.utils import (
TransformAndLog,
MapOrLog
)
from sciencebeam_gym.beam_utils.csv import (
WriteDictCsv,
ReadDictCsv
)
from sciencebeam_gym.beam_utils.io import (
read_all_from_path,
basename,
save_file_content
)
from sciencebeam_gym.beam_utils.main import (
add_cloud_args,
process_cloud_args
)
from sciencebeam_gym.structured_document.svg import (
SvgStructuredDocument
)
from sciencebeam_gym.preprocess.matching_annotator import (
parse_xml_mapping
)
from sciencebeam_gym.preprocess.color_map import (
parse_color_map_from_file
)
from sciencebeam_gym.preprocess.annotation_evaluation import (
evaluate_document_by_page,
DEFAULT_EVALUATION_COLUMNS,
to_csv_dict_rows as to_annotation_evaluation_csv_dict_rows
)
from sciencebeam_gym.preprocess.preprocessing_utils import (
change_ext,
relative_path,
join_if_relative_path,
find_file_pairs_grouped_by_parent_directory_or_name,
convert_pdf_bytes_to_lxml,
convert_and_annotate_lxml_content,
pdf_bytes_to_png_pages,
svg_page_to_blockified_png_bytes,
save_pages,
save_svg_roots,
filter_list_props_by_indices,
get_page_indices_with_min_annotation_percentage
)
from sciencebeam_gym.preprocess.preprocessing_transforms import (
WritePropsToTFRecord
)
def get_logger():
return logging.getLogger(__name__)
def configure_pipeline(p, opt):
image_size = (
(opt.image_width, opt.image_height)
if opt.image_width and opt.image_height
else None
)
xml_mapping = parse_xml_mapping(opt.xml_mapping_path)
if opt.lxml_path:
lxml_xml_file_pairs = (
p |
beam.Create([[
join_if_relative_path(opt.base_data_path, s)
for s in [opt.lxml_path, opt.xml_path]
]]) |
"FindFilePairs" >> TransformAndLog(
beam.FlatMap(
lambda patterns: islice(
find_file_pairs_grouped_by_parent_directory_or_name(patterns),
opt.limit
)
),
log_prefix='file pairs: ',
log_level='debug'
) |
"ReadFileContent" >> beam.Map(lambda filenames: {
'source_filename': filenames[0],
'xml_filename': filenames[1],
'lxml_content': read_all_from_path(filenames[0]),
'xml_content': read_all_from_path(filenames[1])
})
)
elif opt.pdf_path or opt.pdf_xml_file_list:
if opt.pdf_xml_file_list:
pdf_xml_url_pairs = (
p |
"ReadFilePairUrls" >> ReadDictCsv(opt.pdf_xml_file_list, limit=opt.limit) |
"TranslateFilePairUrls" >> beam.Map(lambda row: (row['pdf_url'], row['xml_url']))
)
else:
pdf_xml_url_pairs = (
p |
beam.Create([[
join_if_relative_path(opt.base_data_path, s)
for s in [opt.pdf_path, opt.xml_path]
]]) |
"FindFilePairs" >> TransformAndLog(
beam.FlatMap(
lambda patterns: islice(
find_file_pairs_grouped_by_parent_directory_or_name(patterns),
opt.limit
)
),
log_prefix='file pairs: ',
log_level='debug'
)
)
pdf_xml_file_pairs = (
pdf_xml_url_pairs |
"ReadFileContent" >> beam.Map(lambda filenames: {
'source_filename': filenames[0],
'xml_filename': filenames[1],
'pdf_content': read_all_from_path(filenames[0]),
'xml_content': read_all_from_path(filenames[1])
})
)
lxml_xml_file_pairs = (
pdf_xml_file_pairs |
"ConvertPdfToLxml" >> MapOrLog(lambda v: remove_keys_from_dict(
extend_dict(v, {
'lxml_content': convert_pdf_bytes_to_lxml(
v['pdf_content'], path=v['source_filename']
)
}),
# we don't need the pdf_content unless we are writing tf_records
None if opt.save_tfrecords else {'pdf_content'}
), log_fn=lambda e, v: (
get_logger().warning(
'caught exception (ignoring item): %s, pdf: %s, xml: %s',
e, v['source_filename'], v['xml_filename'], exc_info=e
)
), error_count='ConvertPdfToLxml_error_count')
)
else:
raise RuntimeError('either lxml-path or pdf-path required')
if opt.save_png or opt.save_tfrecords:
with_pdf_png_pages = (
(lxml_xml_file_pairs if opt.save_tfrecords else pdf_xml_file_pairs) |
"ConvertPdfToPng" >> MapOrLog(lambda v: remove_keys_from_dict(
extend_dict(v, {
'pdf_png_pages': list(pdf_bytes_to_png_pages(
v['pdf_content'],
dpi=opt.png_dpi,
image_size=image_size
))
}),
{'pdf_content'} # we no longer need the pdf_content
), error_count='ConvertPdfToLxml_error_count')
)
if opt.save_png:
_ = (
with_pdf_png_pages |
"SavePdfToPng" >> TransformAndLog(
beam.Map(lambda v: save_pages(
FileSystems.join(
opt.output_path,
change_ext(
relative_path(opt.base_data_path, v['source_filename']),
None, '.png.zip'
)
),
'.png',
v['pdf_png_pages']
)),
log_fn=lambda x: get_logger().info('saved result: %s', x)
)
)
if opt.save_lxml:
_ = (
lxml_xml_file_pairs |
"SaveLxml" >> TransformAndLog(
beam.Map(lambda v: save_file_content(
FileSystems.join(
opt.output_path,
change_ext(
relative_path(opt.base_data_path, v['source_filename']),
None, '.lxml.gz'
)
),
v['lxml_content']
)),
log_fn=lambda x: get_logger().info('saved lxml: %s', x)
)
)
annotation_results = (
(with_pdf_png_pages if opt.save_tfrecords else lxml_xml_file_pairs) |
"ConvertLxmlToSvgAndAnnotate" >> MapOrLog(lambda v: remove_keys_from_dict(
extend_dict(v, {
'svg_pages': list(convert_and_annotate_lxml_content(
v['lxml_content'], v['xml_content'], xml_mapping,
name=v['source_filename']
))
}),
# Won't need the XML anymore
{'lxml_content', 'xml_content'}
), log_fn=lambda e, v: (
get_logger().warning(
'caught exception (ignoring item): %s, source: %s, xml: %s',
e, v['source_filename'], v['xml_filename'], exc_info=e
)
), error_count='ConvertPdfToLxml_error_count')
)
if opt.save_svg:
_ = (
annotation_results |
"SaveSvgPages" >> TransformAndLog(
beam.Map(lambda v: save_svg_roots(
FileSystems.join(
opt.output_path,
change_ext(
relative_path(opt.base_data_path, v['source_filename']),
None, '.svg.zip'
)
),
v['svg_pages']
)),
log_fn=lambda x: get_logger().info('saved result: %s', x)
)
)
if opt.annotation_evaluation_csv or opt.min_annotation_percentage:
annotation_evaluation_results = (
annotation_results |
"EvaluateAnnotations" >> TransformAndLog(
beam.Map(lambda v: remove_keys_from_dict(
extend_dict(v, {
'annotation_evaluation': evaluate_document_by_page(
SvgStructuredDocument(v['svg_pages'])
)
}),
None if opt.min_annotation_percentage else {'svg_pages'}
)),
log_fn=lambda x: get_logger().info(
'annotation evaluation result: %s: %s',
x['source_filename'], x['annotation_evaluation']
)
)
)
if opt.save_block_png or opt.save_tfrecords:
color_map = parse_color_map_from_file(opt.color_map)
with_block_png_pages = (
(annotation_evaluation_results if opt.min_annotation_percentage else annotation_results) |
"GenerateBlockPng" >> beam.Map(lambda v: remove_keys_from_dict(
extend_dict(v, {
'block_png_pages': [
svg_page_to_blockified_png_bytes(svg_page, color_map, image_size=image_size)
for svg_page in v['svg_pages']
]
}),
{'svg_pages'}
))
)
if opt.save_block_png:
_ = (
with_block_png_pages |
"SaveBlockPng" >> TransformAndLog(
beam.Map(lambda v: save_pages(
FileSystems.join(
opt.output_path,
change_ext(
relative_path(opt.base_data_path, v['source_filename']),
None, '.block-png.zip'
)
),
'.png',
v['block_png_pages']
)),
log_fn=lambda x: get_logger().info('saved result: %s', x)
)
)
if opt.save_tfrecords:
if opt.min_annotation_percentage:
filtered_pages = (
with_block_png_pages |
"FilterPages" >> beam.Map(
lambda v: filter_list_props_by_indices(
v,
get_page_indices_with_min_annotation_percentage(
v['annotation_evaluation'],
opt.min_annotation_percentage
),
{'pdf_png_pages', 'block_png_pages'}
)
)
)
else:
filtered_pages = with_block_png_pages
_ = (
filtered_pages |
"WriteTFRecords" >> WritePropsToTFRecord(
FileSystems.join(opt.output_path, 'data'),
lambda v: (
{
'input_uri': v['source_filename'],
'input_image': pdf_png_page,
'annotation_uri': v['source_filename'] + '.annot',
'annotation_image': block_png_page
}
for pdf_png_page, block_png_page in zip(v['pdf_png_pages'], v['block_png_pages'])
)
)
)
if opt.annotation_evaluation_csv:
annotation_evaluation_csv_name, annotation_evaluation_ext = (
os.path.splitext(opt.annotation_evaluation_csv)
)
_ = (
annotation_evaluation_results |
"FlattenAnotationEvaluationResults" >> beam.FlatMap(
lambda v: to_annotation_evaluation_csv_dict_rows(
v['annotation_evaluation'],
document=basename(v['source_filename'])
)
) |
"WriteAnnotationEvaluationToCsv" >> WriteDictCsv(
join_if_relative_path(opt.output_path, annotation_evaluation_csv_name),
file_name_suffix=annotation_evaluation_ext,
columns=DEFAULT_EVALUATION_COLUMNS
)
)
def add_main_args(parser):
parser.add_argument(
'--data-path', type=str, required=True,
help='base data path'
)
source_group = parser.add_mutually_exclusive_group(required=True)
source_group.add_argument(
'--lxml-path', type=str, required=False,
help='path to lxml file(s)'
)
source_group.add_argument(
'--pdf-path', type=str, required=False,
help='path to pdf file(s) (alternative to lxml)'
)
source_group.add_argument(
'--pdf-xml-file-list', type=str, required=False,
help='path to pdf-xml csv/tsv file list'
)
parser.add_argument(
'--limit', type=int, required=False,
help='limit the number of file pairs to process'
)
parser.add_argument(
'--save-lxml', default=False, action='store_true',
help='save generated lxml (if using pdf as an input)'
)
parser.add_argument(
'--save-svg', default=False, action='store_true',
help='save svg pages with annotation tags'
)
parser.add_argument(
'--save-png', default=False, action='store_true',
help='save png pages of the original pdf'
)
parser.add_argument(
'--png-dpi', type=int, default=90,
help='dpi of rendered pdf pages'
)
parser.add_argument(
'--image-width', type=int, required=False,
help='image width of resulting PNGs'
)
parser.add_argument(
'--image-height', type=int, required=False,
help='image height of resulting PNGs'
)
parser.add_argument(
'--save-block-png', default=False, action='store_true',
help='save blockified version of the svg as a png'
)
parser.add_argument(
'--color-map', default='color_map.conf',
help='color map to use (see save-block-png)'
)
parser.add_argument(
'--xml-path', type=str, required=False,
help='path to xml file(s)'
)
parser.add_argument(
'--xml-mapping-path', type=str, default='annot-xml-front.conf',
help='path to xml mapping file'
)
parser.add_argument(
'--save-tfrecords', default=False, action='store_true',
help='Save TFRecords with PDF PNG and Annotation PNG'
' (--image-width and --image-height recommended)'
)
parser.add_argument(
'--min-annotation-percentage', type=float, required=False,
help='Minimum percentage of annotations per page'
' (pages below that threshold will get dropped)'
)
parser.add_argument(
'--annotation-evaluation-csv', type=str, required=False,
help='Annotation evaluation CSV output file'
)
parser.add_argument(
'--output-path', required=False,
help='Output directory to write results to.'
)
def process_main_args(parser, args):
args.base_data_path = args.data_path.replace('/*/', '/')
if not args.output_path:
args.output_path = os.path.join(
os.path.dirname(args.base_data_path),
os.path.basename(args.base_data_path + '-results')
)
if not args.xml_path and not args.pdf_xml_file_list:
parser.error('--xml-path required unless --pdf-xml-file-list is specified')
pdf_path_or_pdf_xml_file_list = args.pdf_path or args.pdf_xml_file_list
if args.save_lxml and not pdf_path_or_pdf_xml_file_list:
parser.error('--save-lxml only valid with --pdf-path or --pdf-xml-file-list')
if args.save_png and not pdf_path_or_pdf_xml_file_list:
parser.error('--save-png only valid with --pdf-path or --pdf-xml-file-list')
if args.save_tfrecords and not pdf_path_or_pdf_xml_file_list:
parser.error('--save-tfrecords only valid with --pdf-path or --pdf-xml-file-list')
if sum(1 if x else 0 for x in (args.image_width, args.image_height)) == 1:
parser.error('--image-width and --image-height need to be specified together')
if not (args.save_lxml or args.save_svg or args.save_png or args.save_tfrecords):
parser.error(
'at least one of the output options required:'
' --save-lxml --save-svg --save-png or --save-tfrecords'
)
def parse_args(argv=None):
parser = argparse.ArgumentParser()
add_main_args(parser)
add_cloud_args(parser)
# parsed_args, other_args = parser.parse_known_args(argv)
parsed_args = parser.parse_args(argv)
process_main_args(parser, parsed_args)
process_cloud_args(
parsed_args, parsed_args.output_path,
name='sciencbeam-lab'
)
get_logger().info('parsed_args: %s', parsed_args)
return parsed_args
def run(argv=None):
"""Main entry point; defines and runs the tfidf pipeline."""
known_args = parse_args(argv)
# We use the save_main_session option because one or more DoFn's in this
# workflow rely on global context (e.g., a module imported at module level).
pipeline_options = PipelineOptions.from_dictionary(vars(known_args))
pipeline_options.view_as(SetupOptions).save_main_session = True
with beam.Pipeline(known_args.runner, options=pipeline_options) as p:
configure_pipeline(p, known_args)
# Execute the pipeline and wait until it is completed.
if __name__ == '__main__':
logging.basicConfig(level='INFO')
run()