Skip to content
Snippets Groups Projects
Unverified Commit 40ff4128 authored by Daniel Ecer's avatar Daniel Ecer Committed by GitHub
Browse files

minor model training logging improvement (#116)

* minor model training logging improvement

* make port configurable

* added autocut-start-cloud
parent db96e9e6
No related branches found
No related tags found
No related merge requests found
...@@ -4,6 +4,7 @@ DOCKER_COMPOSE = $(DOCKER_COMPOSE_DEV) ...@@ -4,6 +4,7 @@ DOCKER_COMPOSE = $(DOCKER_COMPOSE_DEV)
PYTEST_ARGS = PYTEST_ARGS =
PORT = 8080
.PHONY: all build .PHONY: all build
...@@ -56,7 +57,16 @@ autocut-start: .require-AUTOCUT_MODEL_PATH build ...@@ -56,7 +57,16 @@ autocut-start: .require-AUTOCUT_MODEL_PATH build
$(DOCKER_COMPOSE) run --rm \ $(DOCKER_COMPOSE) run --rm \
-v "$(AUTOCUT_MODEL_PATH):/tmp/model.pkl" \ -v "$(AUTOCUT_MODEL_PATH):/tmp/model.pkl" \
-e "AUTOCUT_MODEL_PATH=/tmp/model.pkl" \ -e "AUTOCUT_MODEL_PATH=/tmp/model.pkl" \
-p 8080:8080 \ -p $(PORT):8080 \
sciencebeam-gym \
start-autocut.sh
autocut-start-cloud: .require-AUTOCUT_MODEL_PATH build
$(DOCKER_COMPOSE) run --rm \
-v $$HOME/.config/gcloud:/root/.config/gcloud \
-e "AUTOCUT_MODEL_PATH=$(AUTOCUT_MODEL_PATH)" \
-p $(PORT):8080 \
sciencebeam-gym \ sciencebeam-gym \
start-autocut.sh start-autocut.sh
......
...@@ -113,14 +113,15 @@ def run(opt): ...@@ -113,14 +113,15 @@ def run(opt):
opt.input_file_list, opt.input_file_column, opt.input_xpath, opt.limit, opt.input_file_list, opt.input_file_column, opt.input_xpath, opt.limit,
opt.namespaces opt.namespaces
) )
LOGGER.info('loaded %s input values (e.g. %s)', len(input_values), input_values[:10])
target_values = _load_values( target_values = _load_values(
opt.target_file_list, opt.target_file_column, opt.target_xpath, opt.limit, opt.target_file_list, opt.target_file_column, opt.target_xpath, opt.limit,
opt.namespaces opt.namespaces
) )
save_model( LOGGER.info('loaded %s target values (e.g. %s)', len(target_values), target_values[:10])
opt.output_path, serialized_model = train_model(input_values, target_values)
train_model(input_values, target_values) LOGGER.info('model size: {:,} bytes'.format(len(serialized_model)))
) save_model(opt.output_path, serialized_model)
def main(argv=None): def main(argv=None):
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment