Newer
Older
echo "TRAIN_PREPROC_TRAIN_PATH: $TRAIN_PREPROC_PATH"
echo "EVAL_PREPROC_EVAL_PATH: $EVAL_PREPROC_PATH"
echo "QUALITATIVE_PREPROC_EVAL_PATH: $QUALITATIVE_PREPROC_PATH"
echo "TRAIN_MODEL_PATH: $TRAIN_MODEL_PATH"
Daniel Ecer
committed
echo "CLASS_WEIGHTS_URL: ${CLASS_WEIGHTS_URL}"
--train_data_paths "${TRAIN_PREPROC_PATH}/*tfrecord*"
--eval_data_paths "${EVAL_PREPROC_PATH}/*tfrecord*"
--color_map "${CONFIG_PATH}/${COLOR_MAP_FILENAME}"
--channels="$CHANNEL_NAMES"
Daniel Ecer
committed
--class_weights="${CLASS_WEIGHTS_URL}"
--use_separate_channels $USE_SEPARATE_CHANNELS
if [ ! -z "$QUALITATIVE_PREPROC_PATH" ]; then
--qualitative_data_paths "${QUALITATIVE_PREPROC_PATH}/*tfrecord*"
--qualitative_set_size ${QUALITATIVE_SET_SIZE}
Daniel Ecer
committed
echo "MAX_TRAIN_STEPS: $MAX_TRAIN_STEPS"
gcloud ml-engine jobs submit training "$JOB_ID" \
--stream-logs \
--module-name sciencebeam_gym.trainer.task \
--package-path sciencebeam_gym \
--staging-bucket "$TEMP_BUCKET" \
--scale-tier=BASIC_GPU \
-- \
--save_max_to_keep 10 \
--log_interval_secs 100000 \
--eval_interval_secs 100000 \
--save_interval_secs 100000 \
--log_freq 500 \
--eval_freq 500 \
--save_freq 500 \
Daniel Ecer
committed
--max_steps ${MAX_TRAIN_STEPS} \
${COMMON_ARGS[@]}
else
gcloud ml-engine local train \
--module-name sciencebeam_gym.trainer.task \
--package-path sciencebeam_gym.trainer \
-- \
--save_max_to_keep 3 \
--log_interval_secs 600 \
--eval_interval_secs 300 \
--save_interval_secs 300 \
--log_freq 50 \
--eval_freq 50 \
--save_freq 50 \
--max_steps 3 \
${COMMON_ARGS[@]}
fi