Newer
Older
#!/bin/bash
export JOB_ID_FILE='.job-id'
if [ -f "$JOB_ID_FILE" ]; then
rm "${JOB_ID_FILE}"
fi
source prepare-shell.sh
COMMON_ARGS=(
--output_path "${TRAIN_MODEL_PATH}/"
--eval_data_paths "${PREPROC_PATH}/test/*tfrecord*"
--train_data_paths "${PREPROC_PATH}/train/*tfrecord*"
--model "${MODEL_NAME}"
--color_map "${CONFIG_PATH}/${COLOR_MAP_FILENAME}"
--use_separate_channels $USE_SEPARATE_CHANNELS
if [ ! -z "$QUANTITATIVE_FOLDER_NAME" ]; then
COMMON_ARGS=(
${COMMON_ARGS[@]}
--quantitative_data_paths "${PREPROC_PATH}/${QUANTITATIVE_FOLDER_NAME}/*tfrecord*"
--quantitative_set_size ${QUANTITATIVE_SET_SIZE}
)
fi
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
if [ $USE_CLOUD == true ]; then
gcloud ml-engine jobs submit training "$JOB_ID" \
--stream-logs \
--module-name sciencebeam_gym.trainer.task \
--package-path sciencebeam_gym \
--staging-bucket "$BUCKET" \
--region us-central1 \
--runtime-version=1.0 \
--scale-tier=BASIC_GPU \
-- \
--save_max_to_keep 10 \
--log_interval_secs 100000 \
--eval_interval_secs 100000 \
--save_interval_secs 100000 \
--log_freq 500 \
--eval_freq 500 \
--save_freq 500 \
--max_steps 1000 \
${COMMON_ARGS[@]}
else
gcloud ml-engine local train \
--module-name sciencebeam_gym.trainer.task \
--package-path sciencebeam_gym.trainer \
-- \
--save_max_to_keep 3 \
--log_interval_secs 600 \
--eval_interval_secs 300 \
--save_interval_secs 300 \
--log_freq 50 \
--eval_freq 50 \
--save_freq 50 \
--max_steps 3 \
${COMMON_ARGS[@]}
fi